Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation.

نویسندگان

  • Takatoshi Anno
  • Shunsuke Uehara
  • Hideki Katagiri
  • Yasuharu Ohta
  • Kohei Ueda
  • Hiroyuki Mizuguchi
  • Yoshinori Moriyama
  • Yoshitomo Oka
  • Yukio Tanizawa
چکیده

Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Glutamate Dehydrogenase Activity and Insulin Secretion in Mice Exposed to Dexamethasone

Background and Aims: Diabetes is one of the most important endocrine disrupters and is associated with various hormones, including those that can lead to diabetes. Glucocorticoid use may lead to insulin resistance. Dexamethasone is one of these glucocorticoid compounds. Glutamate dehydrogenase plays a key role in the production of glutamate in the secretion of insulin. Based on these hormonal i...

متن کامل

Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase.

Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in an...

متن کامل

Effects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction

Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...

متن کامل

L-glutamine as an insulin secretagogue

We have carried out a detailed examination of L-glutamine metabolism in rat islets in order to elucidate the paradoxical failure of L-glutamine to stimulate insulin secretion. L-Glutamine was converted by isolated islets into GABA (γ -aminobutyric acid), L-aspartate and L-glutamate. Saturation of the intracellular concentrations of all of these amino acids occurred at approx. 10 mmol/l L-glutam...

متن کامل

Glutamate is not a messenger in insulin secretion.

Experiments do not support a recent claim that glutamate formed from the amination of citric acid cycle-derived alpha-ketoglutarate is a messenger in glucose-induced insulin secretion (Maechler, P., and Wollheim, C. (1999) Nature 402, 685-689). Glucose, leucine, succinic acid methyl ester, and alpha-ketoisocaproic acid all markedly stimulate insulin release but do not increase glutamate levels ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 286 2  شماره 

صفحات  -

تاریخ انتشار 2004